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Process dynamics

Simultaneous occurrence of fast and slow dynamics

or modeling
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Data-based dynamic model

for dynamic system identification, similar to [2]

Late dynamic behaviour requires long term memory of states of

Recurrent neural network model consisting of one LSTM unit [1]

87 batches of the stable operating period used for training

3_
f
2_
@ 1-
O
%.g 0 - .
)
2 > -1-
()
% $ _2_ /
O
= g_ 5 Main deviations in
» parts of high variation .
—4 - — original
— prediction
-5 -
0 250 500 750 1000 1250 1500 1750 2000

)

[1] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.

Neural computation, 9(8), 1735-1780.

Timestamp

Hidden

@ state

Dynamics towards the end especially important for
reliable production due to high influence on final state
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Motivation

Objective: Process optimization to decrease quality fluctuations
using model-based advanced process control

Challenges:

. Fully data-based models only provide limited insight and

optimization potential

. Physical models are expensive to obtain when the components

are complex

Plant dynamics

Long time horizon of historic data: past events have to be

considered

Plant behaviour analysed using PCA
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Outlook

Hybrid modeling
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. Use the mechanistic model of the system to train a black-box

model with the historic sensor data

. Train model to describe complex effects resulting from
polymer-solvent interactions, similar to [3]

For example: VLE influence of polymer
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. Apply advanced process control using a hybrid process model
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