

Hybrid modeling and control of a batch distillation process of polymer solutions

Joschka Winz¹, Uma Jaya Ravali Theeda², Balazs Bordas², Kutup Kurt², Andreas Bamberg², Sebastian Engell¹

¹ TU Dortmund, Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, ² Merck KGaA, Darmstadt

Use case

- Industrial process unit
 - Batch distillation column
 - Used to separate ternary mixture containing polymer
- Data characteristics
 - Historic time series data of batch runs covering years of operation
 - Corresponding offline quality, and online process measurements

Process dynamics

- Simultaneous occurrence of fast and slow dynamics
 - Challenge for modeling
 - High data variety of fast dynamics
- Late dynamic behaviour requires long term memory of states of the process

Data-based dynamic model

- Recurrent neural network model consisting of one LSTM unit [1] for dynamic system identification, similar to [2]
- 87 batches of the stable operating period used for training

Dynamics towards the end especially important for reliable production due to high influence on final state

Motivation

- Objective: Process optimization to decrease quality fluctuations using model-based advanced process control
- Challenges:
 - Fully data-based models only provide limited insight and optimization potential
 - Physical models are expensive to obtain when the components are complex

Plant dynamics

- Long time horizon of historic data: past events have to be considered
- Plant behaviour analysed using PCA

Outlook

- Hybrid modeling
 - Use the mechanistic model of the system to train a black-box model with the historic sensor data
 - Train model to describe complex effects resulting from polymer-solvent interactions, similar to [3]

Control

LSTM

 u_t

[3] Igbokwe, P. K., & Egemba, K. C. (2018) Hybrid Mechanistic Neural

Network Modeling of Chemical Processes: Application to Crude Oil

Hidden

state

Apply advanced process control using a hybrid process model

[1] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Distillation. Journal of Scientific and Engineering Research, 5(2):25-31 g, Y. G., & Kim, J. (2021).

Shine learning-based prediction model

www.keen-plattform.de

Contact

Joschka Winz, M.Sc.

Lehrstuhl für Systemdynamik und Prozessführung
Fakultät Bio- und Chemieingenieurwesen
TU Dortmund
F-Mail: ioschka winz@tu-dortmund de

E-Mail: joschka.winz@tu-dortmund.de
Homepage: www.dyn.bci.tu-dortmund.de

on the basis of a decision by the German Bundestag

[2] Kwon, H., Oh, K. C., Choi, Y., Chung, Y. G., & Kim, J. (2021). Development and application of machine learning-based prediction model for distillation column. Int J Intell Syst. 2021, 36:1970-1997